/* * $RCSfile: Tuple3f.java,v $ * * Copyright 1997-2008 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Sun designates this * particular file as subject to the "Classpath" exception as provided * by Sun in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * * $Revision: 1.8 $ * $Date: 2008/02/28 20:18:51 $ * $State: Exp $ */ package javax.vecmath; import java.lang.Math; /** * A generic 3-element tuple that is represented by single precision-floating * point x,y,z coordinates. * */ public abstract class Tuple3f implements java.io.Serializable, Cloneable { static final long serialVersionUID=5019834619484343712L; /** * The x coordinate. */ public float x; /** * The y coordinate. */ public float y; /** * The z coordinate. */ public float z; /** * Constructs and initializes a Tuple3f from the specified xyz coordinates. * @param x the x coordinate * @param y the y coordinate * @param z the z coordinate */ public Tuple3f(float x, float y, float z) { this.x = x; this.y = y; this.z = z; } /** * Constructs and initializes a Tuple3f from the array of length 3. * @param t the array of length 3 containing xyz in order */ public Tuple3f(float[] t) { this.x = t[0]; this.y = t[1]; this.z = t[2]; } /** * Constructs and initializes a Tuple3f from the specified Tuple3f. * @param t1 the Tuple3f containing the initialization x y z data */ public Tuple3f(Tuple3f t1) { this.x = t1.x; this.y = t1.y; this.z = t1.z; } /** * Constructs and initializes a Tuple3f from the specified Tuple3d. * @param t1 the Tuple3d containing the initialization x y z data */ public Tuple3f(Tuple3d t1) { this.x = (float) t1.x; this.y = (float) t1.y; this.z = (float) t1.z; } /** * Constructs and initializes a Tuple3f to (0,0,0). */ public Tuple3f() { this.x = 0.0f; this.y = 0.0f; this.z = 0.0f; } /** * Returns a string that contains the values of this Tuple3f. * The form is (x,y,z). * @return the String representation */ public String toString() { return "(" + this.x + ", " + this.y + ", " + this.z + ")"; } /** * Sets the value of this tuple to the specified xyz coordinates. * @param x the x coordinate * @param y the y coordinate * @param z the z coordinate */ public final void set(float x, float y, float z) { this.x = x; this.y = y; this.z = z; } /** * Sets the value of this tuple to the xyz coordinates specified in * the array of length 3. * @param t the array of length 3 containing xyz in order */ public final void set(float[] t) { this.x = t[0]; this.y = t[1]; this.z = t[2]; } /** * Sets the value of this tuple to the value of tuple t1. * @param t1 the tuple to be copied */ public final void set(Tuple3f t1) { this.x = t1.x; this.y = t1.y; this.z = t1.z; } /** * Sets the value of this tuple to the value of tuple t1. * @param t1 the tuple to be copied */ public final void set(Tuple3d t1) { this.x = (float) t1.x; this.y = (float) t1.y; this.z = (float) t1.z; } /** * Gets the value of this tuple and copies the values into t. * @param t the array of length 3 into which the values are copied */ public final void get(float[] t) { t[0] = this.x; t[1] = this.y; t[2] = this.z; } /** * Gets the value of this tuple and copies the values into t. * @param t the Tuple3f object into which the values of this object are copied */ public final void get(Tuple3f t) { t.x = this.x; t.y = this.y; t.z = this.z; } /** * Sets the value of this tuple to the vector sum of tuples t1 and t2. * @param t1 the first tuple * @param t2 the second tuple */ public final void add(Tuple3f t1, Tuple3f t2) { this.x = t1.x + t2.x; this.y = t1.y + t2.y; this.z = t1.z + t2.z; } /** * Sets the value of this tuple to the vector sum of itself and tuple t1. * @param t1 the other tuple */ public final void add(Tuple3f t1) { this.x += t1.x; this.y += t1.y; this.z += t1.z; } /** * Sets the value of this tuple to the vector difference * of tuples t1 and t2 (this = t1 - t2). * @param t1 the first tuple * @param t2 the second tuple */ public final void sub(Tuple3f t1, Tuple3f t2) { this.x = t1.x - t2.x; this.y = t1.y - t2.y; this.z = t1.z - t2.z; } /** * Sets the value of this tuple to the vector difference of * itself and tuple t1 (this = this - t1) . * @param t1 the other tuple */ public final void sub(Tuple3f t1) { this.x -= t1.x; this.y -= t1.y; this.z -= t1.z; } /** * Sets the value of this tuple to the negation of tuple t1. * @param t1 the source tuple */ public final void negate(Tuple3f t1) { this.x = -t1.x; this.y = -t1.y; this.z = -t1.z; } /** * Negates the value of this tuple in place. */ public final void negate() { this.x = -this.x; this.y = -this.y; this.z = -this.z; } /** * Sets the value of this vector to the scalar multiplication * of tuple t1. * @param s the scalar value * @param t1 the source tuple */ public final void scale(float s, Tuple3f t1) { this.x = s*t1.x; this.y = s*t1.y; this.z = s*t1.z; } /** * Sets the value of this tuple to the scalar multiplication * of the scale factor with this. * @param s the scalar value */ public final void scale(float s) { this.x *= s; this.y *= s; this.z *= s; } /** * Sets the value of this tuple to the scalar multiplication * of tuple t1 and then adds tuple t2 (this = s*t1 + t2). * @param s the scalar value * @param t1 the tuple to be scaled and added * @param t2 the tuple to be added without a scale */ public final void scaleAdd(float s, Tuple3f t1, Tuple3f t2) { this.x = s*t1.x + t2.x; this.y = s*t1.y + t2.y; this.z = s*t1.z + t2.z; } /** * Sets the value of this tuple to the scalar multiplication * of itself and then adds tuple t1 (this = s*this + t1). * @param s the scalar value * @param t1 the tuple to be added */ public final void scaleAdd(float s, Tuple3f t1) { this.x = s*this.x + t1.x; this.y = s*this.y + t1.y; this.z = s*this.z + t1.z; } /** * Returns true if the Object t1 is of type Tuple3f and all of the * data members of t1 are equal to the corresponding data members in * this Tuple3f. * @param t1 the vector with which the comparison is made * @return true or false */ public boolean equals(Tuple3f t1) { try { return(this.x == t1.x && this.y == t1.y && this.z == t1.z); } catch (NullPointerException e2) {return false;} } /** * Returns true if the Object t1 is of type Tuple3f and all of the * data members of t1 are equal to the corresponding data members in * this Tuple3f. * @param t1 the Object with which the comparison is made * @return true or false */ public boolean equals(Object t1) { try { Tuple3f t2 = (Tuple3f) t1; return(this.x == t2.x && this.y == t2.y && this.z == t2.z); } catch (NullPointerException e2) {return false;} catch (ClassCastException e1) {return false;} } /** * Returns true if the L-infinite distance between this tuple * and tuple t1 is less than or equal to the epsilon parameter, * otherwise returns false. The L-infinite * distance is equal to MAX[abs(x1-x2), abs(y1-y2), abs(z1-z2)]. * @param t1 the tuple to be compared to this tuple * @param epsilon the threshold value * @return true or false */ public boolean epsilonEquals(Tuple3f t1, float epsilon) { float diff; diff = x - t1.x; if(Float.isNaN(diff)) return false; if((diff<0?-diff:diff) > epsilon) return false; diff = y - t1.y; if(Float.isNaN(diff)) return false; if((diff<0?-diff:diff) > epsilon) return false; diff = z - t1.z; if(Float.isNaN(diff)) return false; if((diff<0?-diff:diff) > epsilon) return false; return true; } /** * Returns a hash code value based on the data values in this * object. Two different Tuple3f objects with identical data values * (i.e., Tuple3f.equals returns true) will return the same hash * code value. Two objects with different data members may return the * same hash value, although this is not likely. * @return the integer hash code value */ public int hashCode() { long bits = 1L; bits = 31L * bits + (long)VecMathUtil.floatToIntBits(x); bits = 31L * bits + (long)VecMathUtil.floatToIntBits(y); bits = 31L * bits + (long)VecMathUtil.floatToIntBits(z); return (int) (bits ^ (bits >> 32)); } /** * Clamps the tuple parameter to the range [low, high] and * places the values into this tuple. * @param min the lowest value in the tuple after clamping * @param max the highest value in the tuple after clamping * @param t the source tuple, which will not be modified */ public final void clamp(float min, float max, Tuple3f t) { if( t.x > max ) { x = max; } else if( t.x < min ){ x = min; } else { x = t.x; } if( t.y > max ) { y = max; } else if( t.y < min ){ y = min; } else { y = t.y; } if( t.z > max ) { z = max; } else if( t.z < min ){ z = min; } else { z = t.z; } } /** * Clamps the minimum value of the tuple parameter to the min * parameter and places the values into this tuple. * @param min the lowest value in the tuple after clamping * @param t the source tuple, which will not be modified */ public final void clampMin(float min, Tuple3f t) { if( t.x < min ) { x = min; } else { x = t.x; } if( t.y < min ) { y = min; } else { y = t.y; } if( t.z < min ) { z = min; } else { z = t.z; } } /** * Clamps the maximum value of the tuple parameter to the max * parameter and places the values into this tuple. * @param max the highest value in the tuple after clamping * @param t the source tuple, which will not be modified */ public final void clampMax(float max, Tuple3f t) { if( t.x > max ) { x = max; } else { x = t.x; } if( t.y > max ) { y = max; } else { y = t.y; } if( t.z > max ) { z = max; } else { z = t.z; } } /** * Sets each component of the tuple parameter to its absolute * value and places the modified values into this tuple. * @param t the source tuple, which will not be modified */ public final void absolute(Tuple3f t) { x = Math.abs(t.x); y = Math.abs(t.y); z = Math.abs(t.z); } /** * Clamps this tuple to the range [low, high]. * @param min the lowest value in this tuple after clamping * @param max the highest value in this tuple after clamping */ public final void clamp(float min, float max) { if( x > max ) { x = max; } else if( x < min ){ x = min; } if( y > max ) { y = max; } else if( y < min ){ y = min; } if( z > max ) { z = max; } else if( z < min ){ z = min; } } /** * Clamps the minimum value of this tuple to the min parameter. * @param min the lowest value in this tuple after clamping */ public final void clampMin(float min) { if( x < min ) x=min; if( y < min ) y=min; if( z < min ) z=min; } /** * Clamps the maximum value of this tuple to the max parameter. * @param max the highest value in the tuple after clamping */ public final void clampMax(float max) { if( x > max ) x=max; if( y > max ) y=max; if( z > max ) z=max; } /** * Sets each component of this tuple to its absolute value. */ public final void absolute() { x = Math.abs(x); y = Math.abs(y); z = Math.abs(z); } /** * Linearly interpolates between tuples t1 and t2 and places the * result into this tuple: this = (1-alpha)*t1 + alpha*t2. * @param t1 the first tuple * @param t2 the second tuple * @param alpha the alpha interpolation parameter */ public final void interpolate(Tuple3f t1, Tuple3f t2, float alpha) { this.x = (1-alpha)*t1.x + alpha*t2.x; this.y = (1-alpha)*t1.y + alpha*t2.y; this.z = (1-alpha)*t1.z + alpha*t2.z; } /** * Linearly interpolates between this tuple and tuple t1 and * places the result into this tuple: this = (1-alpha)*this + alpha*t1. * @param t1 the first tuple * @param alpha the alpha interpolation parameter */ public final void interpolate(Tuple3f t1, float alpha) { this.x = (1-alpha)*this.x + alpha*t1.x; this.y = (1-alpha)*this.y + alpha*t1.y; this.z = (1-alpha)*this.z + alpha*t1.z; } /** * Creates a new object of the same class as this object. * * @return a clone of this instance. * @exception OutOfMemoryError if there is not enough memory. * @see java.lang.Cloneable * @since vecmath 1.3 */ public Object clone() { // Since there are no arrays we can just use Object.clone() try { return super.clone(); } catch (CloneNotSupportedException e) { // this shouldn't happen, since we are Cloneable throw new InternalError(); } } /** * Get the x coordinate. * * @return the x coordinate. * * @since vecmath 1.5 */ public final float getX() { return x; } /** * Set the x coordinate. * * @param x value to x coordinate. * * @since vecmath 1.5 */ public final void setX(float x) { this.x = x; } /** * Get the y coordinate. * * @return the y coordinate. * * @since vecmath 1.5 */ public final float getY() { return y; } /** * Set the y coordinate. * * @param y value to y coordinate. * * @since vecmath 1.5 */ public final void setY(float y) { this.y = y; } /** * Get the z coordinate. * * @return the z coordinate * * @since vecmath 1.5 */ public final float getZ() { return z; } /** * Set the Z coordinate. * * @param z value to z coordinate. * * @since vecmath 1.5 */ public final void setZ(float z) { this.z = z; } }